

Oil Spill Dispersants: A Literature Review

Prince William Sound Regional Citizens Advisory Committee

Overview

- Introduction and Dispersant Issues
- This Literature Review 2017-2021
- Findings from Literature Review
- Effectiveness
- Toxicity
- Biodegradation
- NAS review and Other Issues
- Summary

Dispersants - further

- Most dispersants consist of a mixture of surfactants and solvents
- These ingredients vary in toxicity and fate in the environment
- Corexit 9500 used extensively at Deepwater Horizon spill consists of 3 surfactants – DOSS, Span, Tween with 2 or 3 solvents
- Note dispersant formulations not changed over 25 years
- Each of these ingredients could be tracked separately during a spill

How are dispersants applied?

Typically using aircraft

Basic Limitations

- Oil must be fresh and not viscous
- Must be able to deliver adequate dose to oil
- Oil must be thick not light sheen
- Must be done early within a time window

The Issues Regarding Dispersants

- Many but three (five) primary ones at this time
- Effectiveness Do dispersants really work on the oil under consideration?
- Toxicity Does adding the dispersant make the oil more or less toxic?
- Biodegradation or Fate of the oil How does adding dispersants affect the oil?

Further Issues Regarding Dispersants

- Two additional ones now
- 4 The effect of dispersants and dispersed oil on human health
- 5 The effect of dispersants on marine snow formation and sedimentation (i.e., do dispersants sink more oil that would occur without dispersants)

Effectiveness

- Will the dispersant and its application be effective on the target oil?
- Define effectiveness minimum 50% 100% wouldn't it have to be effective enough to protect wildlife (birds and mammals) and the shoreline
- What if dispersants were applied and there still was massive oiling of wildlife and shoreline?

Special Issues for PWS

- Temperature water temperatures are below most other waters
- Salinity many regions have lower salinity detrimental to effectiveness
- Sediment sediment in water high in regions would cause sedimentation if oil dispersed

Toxicity

- Major considerations 1. if dispersants are effective, much more oil is put into the water 2. PAHs (toxic to fish) are made soluble in water by dispersants
- Most toxicologists find that mechanically-dispersed oil is
 less toxic than chemically-dispersed oil
- Most toxicologists find that chemically-dispersed oil is more toxic to fish and aquatic life

Fate and Biodegradation

- Question is Do Dispersants change or alter the fate of oil?
- Oil degrades to various other compounds mostly oxygenated compounds – how do dispersants change this?
- Small part of oil goes to CO_2 this complete biodegradation is called mineralization
- Are other fates changed with the use of dispersants?

Effects on Human Health

 Early in the studies – but there are findings that dispersants may impact human health – particularly the respiratory tract is harmed by aerosols

Effect on Marine Snow and Sedimentation

 Studies show that dispersed oil reacts with marine flora to increase marine snow formation and thus increases sedimentation by as much as 10-fold

A Short History of Use of Dispersants

- In USA little use until the Deepwater Horizon spill where dispersants were injected at the well head - as well as used on the surface
- In Alaska a few trial runs were carried out on the Exxon Valdez spill – little success – most dispersant ran off oil
- Elsewhere used more in third-world countries and somewhat in United Kingdom
- Banned in some countries, prime response in others in recent years less use all around

Initial Deepwater Horizon Dispersant Application was Outside Plume

Exxon Valdez – application to emulsified oil in Gulf of Alaska - unsuccessful

Before or after application – slicks appeared to be same

The Latest Literature Review

- Is the fifth in a series dating back to 1997
- Literature review now includes more than 1700 papers
- The emphasis on topics changes over the years depending on importance of issues at the time
- Number of papers increases for a few years after a major spill

General Findings

A CARD

Effectiveness

In the last review period (2017-2021) not much activity in area

Question re: Deepwater Horizon

- If dispersants were so effective, why did so much shoreline oiling take place and why were so many birds and other wildlife oiled?
- No specific studies done on effectiveness either subsea or on-sea
- NAS study says only a few percent of deep oil remained in water
- The effectiveness on DWH remains open to question
- Analytical techniques for at-sea, laboratory and tank tests need improvement

Aquatic Toxicity

- Very extensive studies carried out not only involving basic toxicity tests but also chronic testing with many different end-points
- Deepwater Horizon resulted in extensive funding mostly to established research groups
- There were about 220 individual tests by 25 research groups
- Most studies showed that the chemically-dispersed oil was more toxic than the mechanically-dispersed oil

Findings: most find chemically-dispersed oil more toxic than mechanically-dispersed

Why would chemically-dispersed oil be more toxic than mechanically-dispersed

- The use of dispersant drives PAHs into the water column
- These PAHs are aquatically-toxic
- This does not occur with mechanically-dispersed oil
- Some researchers also indicate that chemically-dispersed oil may be more bioavailable
- In most studies, it was found that CEWAF (Chemically-Dispersed) was from slightly to 1.5 to 100 to as much as 500 times more toxic than the WAF (Mechanically-dispersed)

Biodegradation & Fate of Spilled Oil

- Was extensively studied in this time period
- Biodegradation which is degradation to any carbon species is often confused with degradation to CO₂ which is called 'mineralization'
- Mineralization is true conversion of oil to harmless species
- Most biodegradation results in conversion of oil components to other species, usually oxygenated, which are sometimes more toxic than the starting oil

Results of Recent Studies

- Most authors conclude that that dispersants suppress biodegradation.
- The reason suggested is that some components of dispersants are toxic to some biodegrading bacteria and not others
- This results in a species shift and a delay in biodegradation

Results of Studies – most studies show that dispersants slow biodegradation

Shift of Species

- Several studies show that the presence of dispersants alters both the numbers and succession of hydrocarbon degrading organisms
- This is the result of selective toxicity of dispersants to some species while other species are tolerant of dispersants
- The end result of this number and succession shift is generally a reduction in biodegradation compared to a situation where dispersants are not used
- Another result is that certain components of oil are degraded faster or slower than they would be if dispersants were not used

Marine Snow Formation

- Marine snow is the formation of mucous-like agglomerates including oil
- Marine snow is enhanced by spills and is increased by the presence of dispersants
- As much as 14% of all the DWH oil may have been sedimented to the sea floor as marine snow in a spill

Marine Snow with Oil

Oil-Sediment Interaction

- Studies now show that dispersants enhance the formation of oil-sediment aggregates
- Thus dispersant use will enhance the sedimentation of oil to the sea floor

Dispersion Stability

- It is known that oil dispersions are not stable and will resurface
- Some study and notes of this topic in this review period

Human Health Studies

- Many health studies conducted during previous review period
- Results follow:
- Largest health effect was from inhalation of aerosols which are increased by the use of dispersants
- The health risk from approved sea food was low and maybe less than the risk from inland sea food
- There was low risk to cleanup workers of exposure to inhalation of high levels of toxicants however blood levels of some oil components were found

Fate of Oil/Dispersants

- Some dispersant components may be subject to photolysis and photodegrade in near-surface waters
- The dispersant Corexit 9500 appears to inhibit the photodegradation of PAHs
- One surfactant ingredient in Corexit 9500, may increase
 the aerosolization of oil
- Dispersants increase the sediment uptake of PAHs

Summary

- This period review (2017-2021) saw a steady amount of papers – mostly peer-reviewed
- Many studies in last review period were very scientificmuch better than before

NAS Review of Dispersants

- Completely out of step with literature –especially that of aquatic effects and biodegradation – literature was not reviewed
- Summary not in line with internal contents e.g. main report has fact that less than 2% of oil retained in deep water – but summary claims deep injection worked !
- Most of participants were dispersant proponents, completely out-of-step with current knowledge

Conclusions

- Toxicity and effects Most studies found that chemicallydispersed oil was more toxic to aquatic life than mechanically-dispersed oil
- Dispersants increase PAHs and BTEX in the water column
- Biodegradation and fate Most studies found that dispersants slow the biodegradation of oil
- Dispersants change the population of different degrading genotypes and thus results in a biodegradation rate and type change

Conclusions ...

- Effectiveness still a question of 'is a dispersant application effective if there is massive shoreline oil and massive bird and mammal oil'?
- Many new case studies show minimal effectiveness
- Marine Snow results in large amounts of oil on the sea floor, accelerated by use of dispersants
- Oil-Sediment Aggregates also results in amounts of oil on the sea floor, accelerated by use of dispersants

