BALLAST-BORNE MARINE INVASIVE SPECIES: EXPLORING THE RISK TO COASTAL ALASKA

Danielle Verna Fisheries, Aquatic Science & Technology (FAST) Lab Alaska Pacific University

JOL BOMALO

ZUMA

PHASES OF BIOLOGICAL INTRODUCTIONS

1) 1500 AD - end of the Middle Ages, beginning of global exploration

2) 1800 AD - Industrial Revolution and mass European emigration

3) Present - "Era of Globalization"

Hulme, 2009

BALLAST WATER

WHY BALLAST WATER?

- Ships are the largest contributor of marine invasive species¹
- The international shipping industry transports ~3-5 billion MT of ballast annually²
- Short voyage duration = greater organism survival³
- Responsible for marine invasions around the globe

WHY BALLAST WATER?

Changing environmental conditions have already resulted in increased vessel traffic in the Arctic & Bering Strait

STUDY DESIGN

- Policy Review
 - Objectives:
 - Document changes in policy and identify drivers
 - Assess implications for BWM
- Risk Assessment for Coastal Alaska
 - Objectives:
 - Assess ballast water discharge in Alaska, 2005 2012
 - Develop risk assessment framework
 - Model risk for coastal Alaska

MAJOR POLICY SHIFTS IN BWM

MAJOR POLICY SHIFTS IN BWM

MAJOR POLICY SHIFTS IN BWM

BALLAST WATER MANAGEMENT

- The globally accepted form is ballast water exchange:
 - Empty Refill Method Flow Through Method
 - > 200 nm from shore
 - Management practices are reported to the National Ballast Information Clearinghouse

http://invasions.si.edu/nbic/managementpract.html

Coastwise: ballast water **does not** transit beyond combined US & Canadian EEZs

Overseas: ballast water **does** transit beyond combined US & Canadian EEZs

BALLAST IN ALASKA, 2005 - 2012

- ▶ 3,773 vessels
- 27,303 ballast tanks
- 7.5 x10⁷ MT of ballast
- 67 named locations
- 910 geographic coordinates

- ~72% of ballast discharge was sourced on the US west coast or BC
- Tankers discharge ~88% of all ballast
- Only 33% of reported ballast is managed (BWE)

TOTAL AK BALLAST WATER DISCHARGE: 2005 - 2012

Ballast Water Discharge in Prince William Sound: 2005 - 2012

Ballast Water Discharge in Prince William Sound: 2005 - 2012

Ballast Water Discharge in Prince William Sound: 2005 - 2012

RISK ASSESSMENT

- Model risk as a function of environmental similarity, ballast water age and volume
 - Between source and discharge regions
 - Between source region and ports >50,000 MT

Following other high-latitude risk assessments:

Leppäkoski & Gollasch 2006 Chan et al. 2013 Ware et al. 2013

RISK FRAMEWORK

- Environmental Similarity
 - (positively correlated with risk)

1) Low risk \rightarrow non-adjacent ecoregion

Spalding et al. 2007

- 2) Medium risk \rightarrow adjacent ecoregion
- 3) High risk \rightarrow same ecoregion
- A weighted average was applied to the proximity ranking based on the volume per source ecoregion

RISK FRAMEWORK

- Ballast water age
 - (negatively correlated with risk)
 - Number of days
 between source and
 discharge date

RISK FRAMEWORK

Ballast water volume

(positively correlated with risk)

- Serves as a proxy for propagule pressure
- 0.1 correction factor applied to managed ballast to represent
 90% efficacy rate of BWE (Ruiz & Reid 2007)

ADDITIVE RISK SCALE

	Environmental Similarity	Age (days)	Corrected mean volume of BW discharge: ecoregions & ports (log ₁₀ MT)
(1) Low	< 1	> 10	< 2.6
(2) Medium	1 – 2	6 – 10	2.6 - 5.1
(3) High	> 2	< 6	> 5.1

Total Risk = sum of factors

Total	Risk
9	Extremely High
7 – 8	High
5 – 6	Medium
3 – 4	Low

RISK BY ECOREGION

Marine Ecoregions of the World Spalding et al. 2007

Ports that received > 50,000 MT of ballast

CHANGING RISK BY PORT (2012 – 2009)

CONCLUSIONS

- Southcentral AK receives the greatest volume of ballast discharge
- Tankers pose the greatest risk due to ballast volume and age
- Policy exemptions elevate risk and hinder monitoring
- Recent and expected changes in BW discharge may be predictive of new areas of high risk

Didemnum vexillum

Carcinus maenas

Acknowledgements

Smithsonian Environmental Research Center

AT-SEA PROCESSORS ASSOCIATION

Partners for Healthy Fisheries

Questions?

